Affiliation:
1. Hainan Institute of Zhejiang University
2. Zhejiang University
Abstract
In this paper, we propose an optical module, consisting of an Erbium/Ytterbium co-doped fiber amplifier (EYDFA) and a cascaded periodically poled lithium niobate (cascaded-PPLN), to bridge the conventional telecommunication and the emerging underwater wireless optical communication (UWOC). Compared with using two discrete crystals to achieve the third harmonic generation (THG), using a cascaded crystal simplifies the optical system. Under a fundamental power of 5 W at 1550 nm, we have generated an optical power of 6.54 mW at 516 nm, corresponding to a conversion efficiency of 0.1308%. Furthermore, we added a 5-km single-mode fiber (SMF) before the EYDFA, and by adjusting the seed laser power, we successfully maintained the efficiency of the THG process and the output power of the green light. Afterwards, the nonlinearity of the THG process is analyzed, and a simplified nonlinear pre-compensation method has been proposed to tailor the 4-pulse amplitude modulation (PAM4) signals. In such case, the bit error rate (BER) of the modified PAM4 (m-PAM4) can reduce by 69.3% at a data rate of 12 Gbps. Finally, we demonstrate the practicality of our proposed system by achieving a 7-m UWOC transmission in a water tank at a data rate of 13.46 Gbps in an optical dark room. This result demonstrates the feasibility of the hybrid fiber/UWOC system, highlighting its potential for practical implementation.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Strategic Priority Research Program of the Chinese Academy of Sciences
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献