Fringe pattern analysis to evaluate light sources and sensors in digital photoelasticity

Author:

Fandiño-Toro HermesORCID,Aristizábal-López Yeins,Restrepo-Martínez Alejandro1ORCID,Briñez-de León Juan2

Affiliation:

1. Universidad Nacional de Colombia

2. Institución Universitaria Pascual Bravo

Abstract

When experimental photoelasticity images are acquired, the spectral interaction between the light source and the sensor used affect the visual information of the fringe patterns in the produced images. Such interaction can lead to fringe patterns with an overall high quality, but also can lead to images with indistinguishable fringes, and bad stress field reconstruction. We introduce a strategy to evaluate such interaction that relies on measuring the value of four handcrafted descriptors: contrast, an image descriptor that accounts simultaneously for blur and noise, a Fourier-based descriptor to measure image quality, and image entropy. The utility of the proposed strategy was validated by measuring the selected descriptors on computational photoelasticity images, and the fringe orders achieved when evaluating the stress field, from 240 spectral configurations: 24 light sources and 10 sensors. We found that high values of the selected descriptors can be related to spectral configurations that lead to better stress field reconstruction. Overall, the results show that the selected descriptors can be useful to identify bad and good spectral interactions, which could help to design better protocols for acquiring photoelasticity images.

Funder

Instituto Tecnológico Metropolitano

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3