Coexisting valley and pseudo-spin topological edge states in photonic topological insulators made of distorted Kekulé lattices

Author:

Wei Guochao1ORCID,Liu Zhenzhen1ORCID,Wang Licheng1,Song Jianyuan,Xiao Jun-Jun1

Affiliation:

1. Harbin Institute of Technology (Shenzhen)

Abstract

Photonic topological insulators protected by the lattice spatial symmetry (e.g., inversion and rotation symmetry) mainly support single type edge state, interpreted by either valley or pseudo-spin. Here, we demonstrate theoretically, numerically, and experimentally that a type of judiciously designed two-dimensional Kekulé photonic crystal with time reversal symmetry can possess topological valley and pseudo-spin edge states in different frequency bands. Topologically robust transportation of both the valley and pseudo-spin edge states was confirmed by measuring the transmission of straight and z-shaped interface supported edge mode and comparing with bulk modes in the microwave frequency regime. In addition, we show that due to the distinct topological origins, valley and pseudo-spin edge states can be distinguished by examining their end-scattering into the free space. Our system provides an alternative way in manipulating electromagnetic waves with additional degree-of-freedom, which has potential applications for robust and high-capacity waveguiding and multi-mode dividing.

Funder

Shenzhen Science and Technology Program

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3