FCE-Net: a fast image contrast enhancement method based on deep learning for biomedical optical images

Author:

Zhang Yunfei1,Wu Peng1,Chen Siqi1,Gong Hui12ORCID,Yang Xiaoquan12

Affiliation:

1. Huazhong University of Science and Technology

2. HUST-Suzhou Institute for Brainsmatics

Abstract

Optical imaging is an important tool for exploring and understanding structures of biological tissues. However, due to the heterogeneity of biological tissues, the intensity distribution of the signal is not uniform and contrast is normally degraded in the raw image. It is difficult to be used for subsequent image analysis and information extraction directly. Here, we propose a fast image contrast enhancement method based on deep learning called Fast Contrast Enhancement Network (FCE-Net). We divided network into dual-path to simultaneously obtain spatial information and large receptive field. And we introduced the spatial attention mechanism to enhance the inter-spatial relationship. We showed that the cell counting task of mouse brain images processed by FCE-Net was with average precision rate of 97.6% ± 1.6%, and average recall rate of 98.4% ± 1.4%. After processing with FCE-Net, the images from vascular extraction (DRIVE) dataset could be segmented with spatial attention U-Net (SA-UNet) to achieve state-of-the-art performance. By comparing FCE-Net with previous methods, we demonstrated that FCE-Net could obtain higher accuracy while maintaining the processing speed. The images with size of 1024 × 1024 pixels could be processed by FCE-Net with 37fps based on our workstation. Our method has great potential for further image analysis and information extraction from large-scale or dynamic biomedical optical images.

Funder

National Science and Technology Innovation 2030

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3