Observation and all-optical manipulation of replica symmetry breaking dynamics in a multi-Stokes-involved Brillouin random fiber laser photonic system

Author:

Zhong Zepeng,Zhang LiangORCID,Guo Xu,Zhang Jilin,Zhu MengshiORCID,Pang Fufei,Wang Tingyun

Abstract

In this paper, we propose and demonstrate an all-optical control of RSB transition in a multi-wavelength Brillouin random fiber laser (MWBRFL). Multi-order Stokes light components can be subsequently generated by increasing the power of the Erbium-doped fiber amplifier (EDFA) inside the MWBRFL, providing additional disorder as well as multiple Stokes-involved interplay. It essentially allows diversified laser mode landscapes with adjustable average mode lifetime and random mode density of the 1st order Stokes, which benefits the switching between replica symmetry breaking (RSB) and replica symmetry (RS) states in an optically controlled manner. Results show that the average mode lifetime of the 1st order Stokes component gradually decreases from 250.0 ms to 1.2 ms as high orders from the 2nd to the 5th of Stokes components are activated. Meanwhile, the order parameter q of the 1st order Stokes random lasing emission presents distinct statistical distributions within the selective sub-window under various EDFA optical powers. Consequently, all-optical dynamical control of the 1st Stokes random laser mode landscapes with adjustable average mode lifetime turns out to be attainable, facilitating the RSB transition under an appropriate observation time window. These findings open a new avenue for exploring the underlying physical mechanisms behind the occurrence of the RSB phenomenon in photonic complex systems.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Shanghai Professional Technology Platform

111 Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3