Resonant two-photon terahertz quantum cascade laser

Author:

Talukder Muhammad AnisuzzamanORCID,Dean Paul1ORCID,Linfield Edmund H.1ORCID,Davies A. Giles1ORCID

Affiliation:

1. University of Leeds

Abstract

Lasers that can emit two photons from a single electron relaxation between two states of the same parity have been discussed since the early days of the laser era. However, such lasers have seen only limited success, mainly due to a lack of suitable gain medium. We propose that terahertz (THz) frequency quantum cascade lasers (QCLs) are an ideal semiconductor structure to realize such two-photon emissions. In this work, we present a THz QCL heterostructure designed to emit two resonant photons from each electronic relaxation between two same-parity states in the active region. We present coupled Maxwell-Bloch equations that describe the dynamics of such a two-photon laser and find analytical solutions for the steady-state light intensity, the steady-state energy-resolved carrier densities, and the total threshold carrier density. Due to the two-photon emission from each excited state relaxation and an increased photon-driven carrier transport rate, our simulations predict a significant enhancement of light intensity in our designed resonant two-photon THz QCL when compared to an exemplar conventional THz QCL structure.

Funder

H2020 Future and Emerging Technologies

H2020 Marie Skłodowska-Curie Actions

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3