Blood pressure estimation by spatial pulse-wave dynamics in a facial video

Author:

Iuchi Kaito,Miyazaki Ryogo,Cardoso George C.1ORCID,Ogawa-Ochiai Keiko2,Tsumura Norimichi

Affiliation:

1. University of São Paulo

2. Hiroshima University Hospital

Abstract

We propose a remote method to estimate continuous blood pressure (BP) based on spatial information of a pulse-wave as a function of time. By setting regions of interest to cover a face in a mutually exclusive and collectively exhaustive manner, RGB facial video is converted into a spatial pulse-wave signal. The spatial pulse-wave signal is converted into spatial signals of contours of each segmented pulse beat and relationships of each segmented pulse beat. The spatial signal is represented as a time-continuous value based on a representation of a pulse contour in a time axis and a phase axis and an interpolation along with the time axis. A relationship between the spatial signals and BP is modeled by a convolutional neural network. A dataset was built to demonstrate the effectiveness of the proposed method. The dataset consists of continuous BP and facial RGB videos of ten healthy volunteers. The results show an adequate estimation of the performance of the proposed method when compared to the ground truth in mean BP, in both the correlation coefficient (0.85) and mean absolute error (5.4 mmHg). For comparison, the dataset was processed using conventional pulse features, and the estimation error produced by our method was significantly lower. To visualize the root source of the BP signals used by our method, we have visualized spatial-wise and channel-wise contributions to the estimation by the deep learning model. The result suggests the spatial-wise contribution pattern depends on the blood pressure, while the pattern of pulse contour-wise contribution pattern reflects the relationship between percussion wave and dicrotic wave.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Web photoplethysmography: opportunities and prospects;Regional blood circulation and microcirculation;2023-12-27

2. A Novel Contactless Blood Pressure Measurement System and Algorithm Based on Vision Intelligence;Electronics;2023-12-05

3. Full-Body Cardiovascular Sensing with Remote Photoplethysmography;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3