Affiliation:
1. Université de Technologie de Troyes
2. Université Paris Saclay
Abstract
The integration of nano-emitters into plasmonic devices with spatial control and nanometer precision has become a great challenge. In this paper, we report on the use of a smart polymer to selectively immobilize nano-emitters on specific preselected sites of gold nanocubes (GNCs). The cunning use of the polymer is twofold. First, it records both the selected site and the future emitters–GNC distance through plasmon-assisted photopolymerization. Second, because the polymer is chemically functionalized, it makes it possible to attach the nano-emitters right at the preselected polymerized sites, which subsequently recognize the nano-emitters to be attached. Since the resulting active medium is a spatial memory of specific plasmonic modes, it is anisotropic, making the hybrid nanosources sensitive to light polarization. The ability to adjust their statistical average lifetime by controlling the thickness of the nanopolymer is demonstrated on two kinds of nano-emitters coupled to GNCs: doped polystyrene nanospheres and semiconductor colloidal quantum dots.
Funder
FEDER
The Région Grand Est
Université de Technologie de Troyes
École Universitaire de Recherche
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献