Reconstruction error model of distributed shape sensing based on the reentered frame in OFDR

Author:

Li Sheng1,Hua Peidong1,Ding Zhenyang1ORCID,Liu Kun1ORCID,Yang Yong2,Zhao Junpeng2,Pan Ming1,Guo Haohan1,Zhang Teng1,Liu Li3,Jiang Junfeng1ORCID,Liu Tiegen1

Affiliation:

1. Tianjin University

2. Beijing Institute of Aerospace Control Device

3. The Chinese University of Hong Kong

Abstract

At present, the reconstruction error of optical fiber shape sensing is commonly represented by Euclidean distance error. However, the Euclidian error of shape reconstruction will be dependent on the shape complexity, which depends on length, curvature and torsion. In this paper, we establish a reconstruction error model of distributed shape sensing in optical frequency domain reflectometry (OFDR) based on the Frenet-Serret frame and the error delivering theory, which illustrates the relationship between the reconstruction error and parameters such as curvature, torsion, fiber length and strain measurement error. We experimentally verify the feasibility and applicability of the proposed reconstruction error model by distributed optical fiber shape sensing system based on OFDR. The proposed reconstruction error model can provide a prediction of the maximal reconstruction error when the estimated range of curvature, torsion, fiber length of a shape needs to be reconstructed and strain measurement errors of OFDR system are known. It is very useful to judge whether the shape reconstruction error meets the requirement according to the shape to be reconstructed.

Funder

National Natural Science Foundation of China

Key Technologies Research and Development Program

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3