Abstract
Optical detection of ultrasound for photoacoustic imaging provides a large bandwidth and high sensitivity at high acoustic frequencies. Therefore, higher spatial resolutions can be achieved using Fabry-Pérot cavity sensors than conventional piezoelectric detection. However, fabrication constraints during the deposition of the sensing polymer layer require precise control of the interrogation beam wavelength to provide optimal sensitivity. This is commonly achieved by employing slowly tunable narrowband lasers as interrogation sources, hence limiting the acquisition speed. We propose instead to use a broadband source and a fast-tunable acousto-optic filter to adjust the interrogation wavelength at each pixel within a few microseconds. We demonstrate the validity of this approach by performing photoacoustic imaging with a highly inhomogeneous Fabry-Pérot sensor.
Funder
Fondation Aix-Marseille Universite
Agence Nationale de la Recherche
Conseil Général Département des Bouches du Rhône
Conseil Régional Provence-Alpes-Côte d'Azur
Centre National de la Recherche Scientifique
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Photoacoustic imaging plus X: a review;Journal of Biomedical Optics;2023-12-28