Accelerating finite-difference frequency-domain simulations of inverse designed structures in nanophotonics using deep learning

Author:

Schulte Lukas A. K.12,Butz Marco12ORCID,Becker Marlon3,Risse Benjamin3ORCID,Schuck Carsten12ORCID

Affiliation:

1. Center for NanoTechnology (CeNTech)

2. Center for Soft Nanoscience (SoN)

3. University of Münster

Abstract

The inverse design of nanophotonic devices is becoming increasingly relevant for the development of complex photonic integrated circuits. Electromagnetic first-order simulations contribute to the overwhelming computational cost of the optimization routines in established inverse design algorithms, requiring more efficient methods for enabling improved and more complex design process flows. Here we present such a method to predict the electromagnetic field distribution for pixel-discrete planar inverse designed structures using deep learning. Our model is able to infer accurate predictions used to initialize a conventional finite-difference frequency-domain algorithm and thus lowers the average time required for simulating the electromagnetic response of nanophotonic device layouts by up to 53% in iterative design process flows. We demonstrate the applicability of our deep learning method for the inverse design of photonic integrated powersplitters and mode converters, and we highlight the possibility of exploiting previous learning results in subsequent design tasks of novel functionalities via fine-tuning reduced data sets, thus improving computational speed further.

Funder

Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen

Deutsche Forschungsgemeinschaft

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanophotonic Functionalities and Single Photon Detection for Integrated Quantum Photonics;2024 IEEE Photonics Society Summer Topicals Meeting Series (SUM);2024-07-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3