Ultralow-threshold dual-wavelength optical bistability from a perovskite hyperbolic metasurface and its application in a photonic neural network

Author:

Li ZhitongORCID,Shan Sichao,Hu Shengrun,Gu Yazhou,Ji Xueqiang1ORCID,Hou Junpeng2

Affiliation:

1. Beijing University of Posts and Telecommunications

2. Pinterest Inc.

Abstract

In a hyperbolic metamaterial or metasurface (HMM or HMS), strong light-matter interaction occurs at the phase transition wavelength where the material behavior changes from metal to dielectric. As a result, the enhanced electric field can generate non-linear phenomena, such as optical bistability. In this work, we numerically investigate polarization-dependent dual-wavelength optical bistability from perovskite HMS consisting of alternating layers of MAPbBr3 perovskite and Au. Benefiting from the anisotropic property, the bistable operation wavelength for TE and TM polarizations are different. In particular, for TE polarization, strong light matter interaction resulting from the increment of incident light power not only shifts the phase transition wavelength but also enhances the transmission. Consequently, the bistable on-off contrast ratio is unprecedentedly enlarged. For TM polarization, strong light-matter interaction gives rise to an ultra-low bistable threshold. The proposed optical bistable states can serve as an activation function for optical neurons in a photonic neural network, with similar prediction accuracy across a variety of learning tasks as the classic activation functions ReLU and Sigmoid. Our work suggests a novel avenue towards the insertion of perovskite HMS into optical computing networks.

Funder

Fundamental Research Funds for the Central Universities

State Key Laboratory of Information Photonics and Optical Communications

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3