Affiliation:
1. Beijing National Research Center for Information Science and Technology (BNRist)
Abstract
Compressive imaging senses optically encoded high-dimensional scene data with far fewer measurements and then performs reconstruction via appropriate algorithms. In this paper, we present a novel noniterative end-to-end deep learning-based framework for compressive imaging, dubbed CoCoCs. In comparison to existing approaches, we extend the pipeline by co-optimizing the recovery algorithm with optical coding as well as cascaded high-level computer vision tasks to boost the quality of the reconstruction. We demonstrate the proposed framework on two typical compressive imaging systems, i.e., single pixel imaging and snapshot video compressive imaging. Extensive results, including conventional image quality criteria, mean opinion scores, and accuracy in image classification and motion recognition, confirm that CoCoCs can yield realistic images and videos, which are friendly to both human viewing and computer vision. We hope CoCoCs will give impetus to bridge the gap between compressive imagers and computer vision and the perception of human.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献