Improvement of nonreciprocal unconventional photon blockade by two asymmetrical arranged atoms embedded in a cavity

Author:

Xia Xiuwen12ORCID,Zhang Xinqin1,Xu Jingping2,Li Haozhen3,Fu Zeyun1,Yang Yaping2

Affiliation:

1. Jinggangshan University

2. Tongji University

3. Hangzhou Dianzi University

Abstract

We improve the nonreciprocal unconventional photon blockade (UCPB) in an asymmetrical single-mode cavity with two asymmetrical arranged two-level atoms (TLAs) where cavity and atom spatial symmetry breakings are involved in. In order to get direction-dependent UCPB in asymmetrical system, we deduce two restrictions of frequency and intensity through the steady solution of the cavity QED system analytically. The former restriction is exactly the same as that of a single-atom case, and the latter restriction combined with both spatial asymmetries. Controllable UCPB in this model shows an improving nonreciprocal UCPB with wider operating regime which is promoted by two asymmetrical arranged atoms. The most innovation of this work is that the contributions of two spatial symmetry breakings are figured out clearly and they play different roles in nonreciprocal UCPB. The cavity spatial symmetry breaking and weak nonlinearity are essential to quantum nonreciprocity, while the atoms spatial symmetry is not and it only can promote such nonreciprocal UCPB. Our findings show a prospective access to manipulate quantum nonreciprocity by a couple of atoms.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Provincial Universities of Zhejiang Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3