Fraunhofer diffraction at the two-dimensional quadratically distorted (QD) grating

Author:

Liu Yuewei1,Liu Zhengkun2,Hénault François3,Ortiz Antonio4,Frain Monique5,Feng Yan3

Affiliation:

1. Lanzhou University

2. University of Science and Technology of China

3. Université Grenoble-Alpes

4. Nikon Instruments Inc.

5. Université Paris Cité

Abstract

A two-dimensional (2D) mathematical model of quadratically distorted (QD) grating is established with the principles of Fraunhofer diffraction and Fourier optics. A discrete sampling method is applied for finding a numerical solution of the diffraction pattern of QD grating. An optimized working phase term, which determines the balanced energies and high efficiency of multi-plane images, can be obtained by the bisection algorithm. To confirm the analytical approach described above, the results have been compared with those obtained using a classical numerical model based on Fraunhofer diffraction theory and a fast Fourier transform (FFT) algorithm. The results show that our analytical approach allows the precise design of QD grating and improves the optical performance of simultaneous multi-plane imaging system. An optical setup based on our well-designed QD grating has been appended to the camera port of a commercial microscope, and some preliminary microscopy images have been successfully obtained. Further upgrade of our analytical model is in progress to improve the image quality and promote the applications.

Funder

Natural Science Foundation of Gansu Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3