Abstract
Achieving high solar energy absorption based on nanofluids (NFs) needs further study in solar photothermal conversion technology. In this work, we performed COMSOL simulations to investigate the solar energy absorption using a core-shell nanostructure composed of the Au core and shell with different materials. The influence of the radius of the Au core, the materials of the shell, and the shell thickness on the solar absorption efficiency factor (SAEF) are systematically studied. The results show that the SAEF of the Au@Li nanoparticle with ratio of 0.5 has the highest SAEF of 1.4779, increasing 1.99 times compared to that of the bare Au nanoparticle of 0.74326 with the same radius. Moreover, the optical properties, electric field distribution, and SAEF of the Au@Li dimer are further evaluated to demonstrate the aggregation effects on SAEF. We find that the SAEF of the Au@Li dimer reaches the maximum of 4.34 with a distance around 1 nm, where the LSPR coupling effect in the nanogap is sharply enhanced 700 times irradiated by light with wavelength of 760 nm. Finally, the direct absorber solar collector performance demonstrates that Au@Li dimer NFs can collect 93% of solar energy compared to 54% for Au@Li NFs and 51% for Au NFs. This work provides the possibility to achieve more efficient solar thermal conversion, and may have potential applications in efficient solar energy harvesting and utilization.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Key Research and Development Program of Shaanxi
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献