Affiliation:
1. RMIT University
2. Taiyuan University of Technology
Abstract
Electro-optic modulators (EOMs) are essential devices of optical communications and quantum computing systems. In particular, ultra-compact EOMs are necessary for highly integrated photonic chips. Thin film lithium niobate materials are a promising platform for designing highly efficient EOMs. However, EOMs based on conventional waveguide structures are at a millimeter scale and challenging to scale down further, greatly hindering the capability of on-chip integration. Here, we design an EOM based on lithium niobate valley photonic crystal (VPC) structures for the first time. Due to the high effective refractive index introduced by the strong slow light effect, the EOM can achieve an ultra-compact size of 4 μm×14 μm with a half-wave voltage of 1.4 V. The EOM has a high transmittance of 0.87 in the 1068 nm because of the unique spin-valley locking effect in VPC structures. The design is fully compatible with current nanofabrication technology and immune to fabrication defects. Therefore, it opens a new possibility in designing lithium niobate electro-optic modulators and will find broad applications in optical communication and quantum photonic devices.
Funder
National Key Research and Development Program of China
Australian Research Council
National Natural Science Foundation of China
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献