Affiliation:
1. Harbin Engineering University
Abstract
Optical absorption and scattering result in quality degradation of underwater images, which hampers the performance of underwater vision tasks. In practice, a well-posed underwater image recovery requires a combination of scene specificity and adaptability. To this end, this paper breaks down the overall recovery process into in-situ enhancement and data-driven correction modules, and proposes a Multi-stage Underwater Image Enhancement (MUIE) method to cascade the modules. In the in-situ enhancement module, a channel compensation with scene-relevant supervision is designed to address different degrees of unbalanced attenuation, and then the duality-based computation inverts the result of running a enhancement on inverted intensities to recover the degraded textures. In response to different scenarios, a data-driven correction, encoding corrected color-constancy information under data supervision, is performed to correct the improper color appearance of in-situ enhanced results. Further, under the collaboration between scene and data information, the recovery of MUIE avoids ill-posed response and reduces the prior dependence of specific scenes, resulting in a robust performance in different underwater scenes. Recovery comparison results confirm that the recovery of MUIE shows the superiority of scene clarity, realistic color appearance and evaluation scores. With the recovery of MUIE, the Underwater Image Quality Measurement (UIQM) scores of recovery-challenging images in the UIEB dataset were improved from 1.59 to 3.92.
Funder
Natural Science Foundation of Heilongjiang Province
the Basic Scientific Research for National Defense
the Key Research and Development Projects of Ministry of Science and Technology
Subject
Atomic and Molecular Physics, and Optics
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献