Analysis of hybrid plasmon-phonon-polariton modes in hBN/graphene/hBN stacks for mid-infrared waveguiding

Author:

Tu Pei-Yu1,Huang Chia-Chien1ORCID

Affiliation:

1. National Chung Hsing University

Abstract

Guiding mid-infrared (mid-IR) signals provide wide-ranging applications including chemical sensing, thermal imaging, and optical waveguiding. To manipulate mid-IR signals on photonic chips, it is critical to build a waveguide that provides both sub-diffraction field confinement and low loss. We present a mid-IR waveguide made up of a multilayer graphene/hexagonal boron nitride (hBN) stacking (MLGhS) and a high-refractive index nanowire. The guided mode of the proposed waveguide structure is formed by coupling the fundamental volume plasmon polariton with the fundamental hyperbolic phonon polariton in hBN, and is then modulated by a high-index nanowire. Interestingly, we found that the effective index, propagation length, and mode area of the guided mode vary as the dependences of N-1, N, and N3/2, where N is the number of graphene layers. In addition, an anomalous result, which reveals Lp and Am monotonously decrease as Fermi energy increases that is not observed in conventional graphene plasmon waveguides, occurs in the present structure. The modal properties are analyzed by altering geometry effects and material parameters, and by crossing the upper Reststrahlen band of hBN from the wavevector k = 1,300 to 1,500 cm−1. Furthermore, crosstalk between adjacent waveguides are investigated to assess the degree of integration. The proposed idea not only provides a potential approach for designing tunable and large-area photonic integrated circuits, but it also has the potential to be extended to other 2D materials such as silicone, germanene, and stanene.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3