Affiliation:
1. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences
2. Harbin Institute of Technology
Abstract
This Letter reports a new optical fiber gas sensor for measuring breath acetone. The sensor is based on photonic bandgap (PBG) mode laser emission sensing technology using liquid crystal (LC), which is combined with silica fiber and chiral nematic liquid crystal (CNLC), thus providing an ultra-compact, fast-response and simple-to-produce sensing system with a fast response that can accurately and quantitatively determine the concentration of respiratory acetone within the normal oral temperature range (35–38°C). Since LCs are affected by temperature, we propose a method that eliminates the influence of the temperature to solve the problem of the temperature influence when measuring gas. The detection of acetone leads to splitting of the dual laser peaks, with a linear correlation of 0.99. The sensor has a limit of detection of 65 ppm for acetone vapor and thus is suitable for breath acetone detection in diabetic patients.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献