Modeling the contribution of secondary aerosols on aerosol scattering ensemble: a comparative analysis of the scattering abilities of different aerosol species

Author:

Arreyndip Nkongho AyuketangORCID,Joseph Ebobenow1

Affiliation:

1. University of Buea

Abstract

Atmospheric transport processes and conditions can cause primary aerosols to interact, giving rise to secondary aerosols with unique chemical and physical properties. These new species of aerosols can potentially influence the light-scattering properties of the aerosol ensemble and thus the climate system in ways that are not yet fully understood. In this study, the effects of different aerosol types on the scattering of incident solar radiation are modeled and the contribution of secondary aerosols to the aerosol scattering ensemble is highlighted. Using the discrete dipole approximation method, the scattering properties of freshwater droplets, sea salts (liquid, dry, and wet solids), ice crystals, clay minerals, clay particles coated with a thin film of water and sea salt droplets, black carbon (BC), and a complex particle of clay, sea salt, and BC with sulphate coating are calculated and compared. The calculations assume a spherical particle shape model for marine aerosols, a distorted cube for wet salts and ice, and a distorted ellipse with an induced surface roughness length for terrestrial aerosols at a size parameter of x=5 and a wavelength range of 400 to 750 nm. The results show that tiny ice crystals trapped in freshwater droplets are the most efficient atmospheric scatterers, followed by sea salt droplets, while BC absorbs the most compared to other aerosols studied. On average, the atmospheric interaction between marine and terrestrial aerosols is able to enhance atmospheric light scattering and polarisation by aerosols compared to terrestrial aerosols. This study suggests that the scenario in which there are many freshwater aerosols in the atmosphere can be very healthy for the Earth’s system compared to other aerosols. Therefore, we suggest that when formulating the radiative properties of aerosols in climate models, the scenarios of dominant freshwater aerosols and the contribution of secondary aerosols should not be ignored. The results presented here may be useful in the fields of Geoengineering and Aerosol-cloud microphysics.

Funder

Alexander von Humboldt-Stiftung

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3