Affiliation:
1. Shanghai Jiao Tong University
Abstract
We proposed and demonstrated an unprecedented high-efficiency Brillouin random fiber laser (BRFL) by fiber length optimization in a half-open linear cavity. In terms of the trade-off between Brillouin gain saturation and weak distributed Rayleigh feedback strength, optimal laser efficiency associated to proper fiber length in a BRFL was theoretically predicted. As a proof-of-concept, a unidirectional-pumped BRFL with a half-open linear cavity was experimentally conducted, in which a fiber Bragg grating at one end of gain fiber served as a high-reflection mirror while Rayleigh scattering enabled distributed feedback for random lasing resonance. Results show that the optimal fiber length of ∼3.4 km in the BRFL offers sufficient Rayleigh scattered random feedback whilst alleviating the Brillouin gain saturation to a large extent. Consequently, an optimal laser efficiency of 77.0% in the BRFL was experimentally demonstrated, which reaches the state-of-the-art high record. Laser characteristics, including the linewidth, statistics and frequency jitter were also systematically investigated. It is believed that such efficient BRFL could provide a promising platform for inspiring new explorations of laser physics as well as potentials in long-haul coherent communication and fiber-optic sensing.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality
Industrial Foresight Technology Research and Development Program
Shanghai Professional Technology Platform
111 Project
State Key Laboratory of Advanced Optical Communication Systems and Networks
Subject
Atomic and Molecular Physics, and Optics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献