Affiliation:
1. Nanjing University of Information Science & Technology
2. Beijing University of Posts and Telecommunications
Abstract
In this paper, we propose a high-security three-dimensional optical transmission system utilizing time-frequency-space interleaving chaos, which simultaneously enhances the reliability and security of the system. The four-wing 3D chaos model encrypts the time-frequency space interleaved modulation domain of a orthogonal time-frequency space (OTFS) modulation signal and the modulated phase information simultaneously, improving the system's security. We also experimentally validate the proposed high-security 3D-OTFS method, utilizing the hexadecimal modulation technique. The modulated OTFS signal achieves a transmission rate of 34.1 Gb/s over a 2-km seven-core fiber link, with the OTFS signal exhibiting a maximum of 1.31 dB receiver sensitivity gain compared to orthogonal frequency division multiplexing (OFDM) signals under the forward error correction threshold of the bit error rate. The achieved keyspace is equal to 5 × 1048. The findings demonstrate that the proposed high-security three-dimensional optical transmission mechanism, based on time-frequency-space interleaved disruption, exhibits excellent anti-interference ability and confidentiality performance. Consequently, it holds promising prospects for future applications in optical communications.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Jiangsu Provincial Key Research and Development Program
The Natural Science Foundation of the Jiangsu Higher Education Institutions of China
The Startup Foundation for Introducing Talent of NUIST
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献