Abstract
An approach to achieve controllable non-uniformly distributed spiking cluster generation is proposed and demonstrated based on an externally-triggered broadband optoelectronic oscillator (OEO). The theory of controlling the distribution of the spiking pulses in a spiking cluster is established. Based on the theory, the dynamic and the distribution characteristics are analyzed and revealed in the stable spiking oscillation state under different externally-injected trigger signal voltages. The peak-voltage envelop of the cluster and the interval of the spiking pulses are demonstrated to have an approximate negative linearity relationship with the externally-injected trigger signal voltage in both the numerical simulation and the experiment, where a square waveform, a trapezoidal waveform, a parabola waveform, and a half-sinusoidal waveform are used as the externally-injected trigger signals. The results indicate that the spiking pulse distribution in the generated spiking cluster can be well controlled through tuning the externally-injected trigger signal voltage. The proposed scheme can be utilized in spiking encoding and reservoir computing.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities