Abstract
This paper reports the fabrication and characterization of the first flexible transparent capacitive micromachined ultrasound transducer (CMUT) array for through-illumination photoacoustic tomography. Fabricated based on an adhesive wafer bonding technique and a PDMS backfill approach, the array has a maximum transparency of 67% in visible light range and can be bent to a radius of curvature of less than 5 mm without the structural layers being damaged. With a center frequency of 3.5 MHz, 80% fractional bandwidth, and noise equivalent pressure (NEP) of 62 mPa/
H
z
, the array was successfully used in limited-view photoacoustic tomography of a 100 µm wire target, demonstrating lateral and axial resolutions of 293 µm and 382 µm, respectively, with 46 dB signal-to-noise ratio. Additionally, deep tissue photoacoustic tomography was also demonstrated on a blood tube within a chicken tissue using the fabricated CMUT arrays.
Funder
Natural Sciences and Engineering Research Council of Canada
Alberta Innovates
Subject
Atomic and Molecular Physics, and Optics
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献