Strategy for reducing the effect of surface fluctuation in the classification of aluminum alloy via data transfer and laser-induced breakdown spectroscopy

Author:

Chen Jing1,Ding Yu12,Hu Ao1,Chen Wenjie1,Wang Yufeng1,Zhao Meiling1,Shu Yan1

Affiliation:

1. Nanjing University of Information Science & Technology

2. Quanzhou College of Information Engineering

Abstract

Laser-induced breakdown spectroscopy (LIBS) plays an increasingly important role in the classification and recycling of aluminum alloys owing to its outstanding elemental analysis performance. For LIBS measurements with sample surface fluctuations, consistently and exactly maintaining the laser and fiber focus points on the sample surface is difficult, and fluctuations in the focus severely affect the stability of the spectrum. In this study, a data transfer method is introduced to reduce the effect of spectral fluctuations on the model performance. During the experiment, a focal point is placed on the sample surface. Then, keeping experimental conditions unchanged, the three-dimensional platform is only moved up and down along the z-axis by 0.5 mm, 1 mm, 1.5 mm, 2 mm and 2.5 mm, respectively. Eleven spectral datasets at different heights are collected for analysis. The KNN model is used as the base classifier, and the accuracies of the 11 datasets, from the lowest to the highest, are 11.48%, 19.71%, 30.57%, 45.71%, 53.57%, 88.28%, 52.57%, 21.42%, 14.42%, 14.42%, and 14.42%. To improve predictive performance, the difference in data distribution between the spectra collected at the sample surface and those collected at other heights is reduced by data transfer. Feature selection is introduced and combined with data transfer, and the final accuracies are 78.14%, 82.28%, 80.14%, 89.71%, 91.85%, 98.42%, 94.28%, 92.42%, 82.14%, 78.57%, and 73.71%. It can be seen that the proposed method provides a new feasible and effective way for the classification of aluminum alloys in a real detection environment.

Funder

Natural Science Foundation of Fujian Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3