Optical trapping-enhanced probes designed by a deep learning approach

Author:

Peng Miao12ORCID,Xiao Guangzong1ORCID,Chen Xinlin1,Du Te1ORCID,Kuang Tengfang1ORCID,Han Xiang1ORCID,Xiong Wei1,Zhu Gangyi3,Yang Junbo1ORCID,Tan Zhongqi1,Yang Kaiyong1,Luo Hui1

Affiliation:

1. National University of Defense Technology

2. Central South University of Forestry and Technology

3. Nanjing University of Posts and Telecommunications

Abstract

Realizing optical trapping enhancement is crucial in biomedicine, fundamental physics, and precision measurement. Taking the metamaterials with artificially engineered permittivity as photonic force probes in optical tweezers will offer unprecedented opportunities for optical trap enhancement. However, it usually involves multi-parameter optimization and requires lengthy calculations; thereby few studies remain despite decades of research on optical tweezers. Here, we introduce a deep learning (DL) model to attack this problem. The DL model can efficiently predict the maximum axial optical stiffness of Si/Si3N4 (SSN) multilayer metamaterial nanoparticles and reduce the design duration by about one order of magnitude. We experimentally demonstrate that the designed SSN nanoparticles show more than twofold and fivefold improvement in the lateral ( k x and k y ) and the axial ( k z ) optical trap stiffness on the high refractive index amorphous TiO2 microsphere. Incorporating the DL model in optical manipulation systems will expedite the design and optimization processes, providing a means for developing various photonic force probes with specialized functional behaviors.

Funder

Major Science and Technological Research Project of Hunan Province

Natural Science Foundation of Hunan Province

Scientific Research Project of the National University of Defense Technology

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3