Abstract
Based on the chaotic signal provided by a simple chaotic system, a random bit sequence with a rate of 640 Gb/s is generated through adopting the circulating exclusive-or (CXOR) post-processing method. Such a simple chaotic system is built via a slave semiconductor laser subject to optical injection of a chaotic signal originated from a master semiconductor laser under multi-path optical feedback. First, through inspecting the dependences of the time-delay-signature (TDS) and bandwidth of the chaotic signal on some key operation parameters, optimized parameters are determined for generating a high-quality chaotic signal with a large bandwidth and low TDS. Second, the high-quality chaotic signal is converted to an 8-bit digital signal by sampling with a digital oscilloscope at 80 GSa/s. Next, through adopting the CXOR post-processing method, a bit sequence with a rate of 640 Gb/s is obtained. Finally, the randomness is estimated by the National Institute of Standard Technology (NIST) Special Publication 800-22 statistical tests, and the results demonstrate that the obtained random bit sequence can pass all the NIST tests.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献