Affiliation:
1. Thales Research and Technology
2. ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology
3. Institut Langevin, ESPCI Paris, Université PSL
4. ICREA-Institucio Catalana de Recerca i Estudis Avanç ats
Abstract
Optical manipulation of quantum systems requires stable laser sources able to produce complex waveforms over a large frequency range. In the visible region, such waveforms can be generated using an acousto-optic modulator driven by an arbitrary waveform generator, but these suffer from a limited tuning range typically of a few tens of MHz. Visible-range electro-optic modulators are an alternative option offering a larger modulation bandwidth, however they have limited output power which drastically restricts the scalability of quantum applications. There is currently no architecture able to perform phase-stabilized waveforms over several GHz in the visible or near infrared region while providing sufficient optical power for quantum applications. Here we propose and develop a modulation and frequency conversion set-up able to deliver optical waveforms over a large frequency range, with a high spurious extinction ratio, scalable to the entire visible/near infrared region with high optical power. The optical waveforms are first generated at telecom wavelength and then converted to the emitter wavelength through a sum frequency generation process. By adapting the pump laser frequency, the optical waveforms can be tuned to interact with a broad range of optical quantum emitters or qubits such as alkali atoms, trapped ions, rare earth ions, or fluorescent defects in solid-state matrices. Using this architecture, we were able to detect and study a single erbium ion in a nanoparticle. We also generated high bandwidth signals at 606 nm, which would enable frequency multiplexing of on-demand read-out Pr3+:Y2SiO5 quantum memories.
Funder
HORIZON EUROPE Excellent Science
HORIZON EUROPE Digital, Industry and Space