Highly collimated intense radiation from electron collisions with a tightly focused linearly polarized laser pulse

Author:

Li XingyuORCID,Xia Wanyu,Tian Youwei,Ren Shanling

Abstract

The use of high-energy radiation generated by electron collisions with a laser pulse is an effective method to treat cancer. In this paper, the spatial properties of radiation produced by electron collisions with a tightly focused linearly polarized laser pulse are investigated. Theoretical derivations and numerical simulations within the framework of classical electrodynamics show that the stronger the laser intensity, the higher the initial electron energy, and the longer the laser pulse, which can produce greater radiation power. An increase in the laser intensity expands the range of electron radiation and therefore reduces the collimation of the radiation. The collimation in the radiation is better when colliding with an electron of higher initial energy. The phenomenon that the radiated power of the electron varies periodically with the initial phase of the laser is also found. The results of this paper have important implications to produce strongly radiating and highly collimated rays.

Funder

Natural Science Foundation of Nanjing University of Posts and Telecommunications

Natural Science Foundation of Shanghai

Natural Science Fund for Colleges and Universities in Jiangsu Province

National Natural Science Foundation of China

Science and Technology Innovation Training Program Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3