Abstract
The use of high-energy radiation generated by electron collisions with a laser pulse is an effective method to treat cancer. In this paper, the spatial properties of radiation produced by electron collisions with a tightly focused linearly polarized laser pulse are investigated. Theoretical derivations and numerical simulations within the framework of classical electrodynamics show that the stronger the laser intensity, the higher the initial electron energy, and the longer the laser pulse, which can produce greater radiation power. An increase in the laser intensity expands the range of electron radiation and therefore reduces the collimation of the radiation. The collimation in the radiation is better when colliding with an electron of higher initial energy. The phenomenon that the radiated power of the electron varies periodically with the initial phase of the laser is also found. The results of this paper have important implications to produce strongly radiating and highly collimated rays.
Funder
Natural Science Foundation of Nanjing University of Posts and Telecommunications
Natural Science Foundation of Shanghai
Natural Science Fund for Colleges and Universities in Jiangsu Province
National Natural Science Foundation of China
Science and Technology Innovation Training Program Project
Subject
Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献