Ultrafast fiber laser at 0.9 µm with a gigahertz fundamental repetition rate by a high gain Nd3+-doped phosphate glass fiber

Author:

Wang Yafei,Zhang Jing1,Wen Junpeng1,Qiu Baotian,Qiu Jianrong2,Yang Zhongmin1,Wei Xiaoming1,Dong Guoping

Affiliation:

1. South China University of Technology

2. College of Optical Science and Engineering Zhejiang University

Abstract

Fiber lasers, owing to the advantages of excellent beam quality and unique robustness, play a crucial role in lots of fields in modern society. Developing optical glass fibers with superior performance is of fundamental importance for wide applications of fiber lasers. Here, a new Nd3+-doped phosphate single-mode fiber that enables a high gain at 0.9 µm is designed and fabricated. Compared to previous Nd3+-doped silica fibers, the developed phosphate fiber exhibits a significant gain promotion, up to 2.7 dB cm−1 at 915 nm. Configuring in a continuous-wave fiber laser, this phosphate fiber can provide a slope efficiency of 11.2% in a length of only 4.5 cm, about 6 times higher than that of Nd3+-doped silica fiber. To showcase its uniqueness, an ultrafast fiber laser with ultrashort cavity is constructed, such that an ultrashort pulse train with a fundamental repetition rate of up to 1.2 GHz is successfully generated. To the best of our knowledge, this is the highest fundamental repetition rate for mode-locked fiber lasers at this wavelength range — two orders of magnitude higher than that of prior works. These results indicate that this Nd3+-doped phosphate fiber is an effective gain medium for fiber amplifiers and lasers at 0.9 µm, and it is promising for two-photon biophotonics that requires long-term operation with low phototoxicity.

Funder

Key Research and Development Program of Guangzhou

National Natural Science Foundation of China

Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program

NSFC Development of National Major Scientific Research Instrument

Natural Science Foundation of Guangdong Province

Mobility Programme of the Sino-German

Double First Class Initiative

State Key Lab of Luminescent Materials and Devices, South China University of Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3