Performance analysis of a RIS-assisted RoFSO communication system over Malaga distribution for smart city applications

Author:

Kumar Abhishek,Krishnan PrabuORCID,Raj A. Arockia Bazil1ORCID

Affiliation:

1. Defence Institute of Advanced Technology

Abstract

Radio over free space optics (RoFSO) is one of the potential technologies that can satisfy the requirements of 5G services in a smart city. However, as RoFSO is line-of-sight (LOS) communication, one of its limitations is the occurrence of a skip zone in the targeted areas. In this work, a reconfigurable intelligent surface (RIS) is proposed as the solution to overcome this connection difficulty, which prevents signal blocking by generating LOS connections. These RIS modules extend the communication channel coverage, making it more intelligent and controllable. The performance analysis based on outage probability, ergodic channel capacity, and bit error rate has been performed using heterodyne detection. Malaga distribution has been used to model atmospheric turbulence. The exact closed-form expressions of the probability density function and cumulative distribution function of the end-to-end signal-to-noise ratio are derived. Exploiting these derived statistics, system performance is investigated through the ergodic channel capacity, outage probability, and average bit error rate for M-ary quadrature amplitude modulation and two binary modulation schemes: non-coherent binary frequency-shift keying and coherent binary phase-shift keying. Numerical results are compared among different turbulence conditions, link lengths, and scattering errors. The results show that the proposed RIS-assisted RoFSO technology has the potential to be effective for 5G smart city applications.

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3