3D k-space reflectance fluorescence tomography via deep learning

Author:

Nizam Navid Ibtehaj1ORCID,Ochoa Marien1ORCID,Smith Jason T.1ORCID,Intes Xavier1ORCID

Affiliation:

1. Rensselaer Polytechnic Institute

Abstract

We report on the potential to perform image reconstruction in 3D k-space reflectance fluorescence tomography (FT) using deep learning (DL). Herein, we adopt a modified AUTOMAP architecture and develop a training methodology that leverages an open-source Monte-Carlo-based simulator to generate a large dataset. Using an enhanced EMNIST (EEMNIST) dataset as an embedded contrast function allows us to train the network efficiently. The optical strategy utilizes k-space illumination in a reflectance configuration to probe tissue in the mesoscopic regime with high sensitivity and resolution. The proposed DL model training and validation is performed with both in silico data and a phantom experiment. Overall, our results indicate that the approach can correctly reconstruct both single and multiple fluorescent embedding(s) in a 3D volume. Furthermore, the presented technique is shown to outperform the traditional approaches [least-squares (LSQ) and total-variation minimization (TVAL)], especially at higher depths. We, therefore, expect the proposed computational technique to have future implications in preclinical studies.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning Aided Fluorescence Lifetime Tomography;Optica Biophotonics Congress: Biomedical Optics 2024 (Translational, Microscopy, OCT, OTS, BRAIN);2024

2. Micro-CT guided deep neural network for 3D reconstructions in widefield diffuse optical tomography;Multimodal Biomedical Imaging XVIII;2023-03-06

3. Deep learning-based fusion of widefield diffuse optical tomography and micro-CT structural priors for accurate 3D reconstructions;Biomedical Optics Express;2023-02-07

4. High-fidelity mesoscopic fluorescence molecular tomography based on SSB-Net;Optics Letters;2023-01-02

5. 3D Fluorescence Lifetime Estimation Using Deep Learning;Biophotonics Congress: Optics in the Life Sciences 2023 (OMA, NTM, BODA, OMP, BRAIN);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3