Fisher information and the Cramér–Rao lower bound in single-pixel localization microscopy with spatiotemporally modulated illumination

Author:

Xiu Maxine,Field Jeff1ORCID,Bartels RandyORCID,Pezeshki Ali1

Affiliation:

1. Colorado State University

Abstract

Single-pixel imaging, the concept that an image can be captured via a single-pixel detector, is a cost-effective yet powerful technique to reduce data acquisition duration without sacrificing image resolution when properly structured illumination patterns are introduced. Normally, the image reconstruction process is subject to the diffraction limit. Here, we study the possibility of exploiting the information contained in the illumination patterns to enable a form of single-pixel localization microscopy (SPLM) for super-resolution. This concept is inspired by coherent holographic image reconstruction by phase transfer (CHIRPT) microscopy. CHIRPT microscopy is a single-pixel imaging technique that uses structured illumination that is spatiotemporally modulated (STM) so that a unique temporal modulation pattern is imparted to each point within a large illumination volume. The fluorescent light emitted by molecules contains the same temporal modulations as the illumination patterns at the locations of the molecules. By recording a portion of the total emitted fluorescent power, the signal may be numerically processed to form an image. Unique temporal modulation patterns that excite fluorescent probes at each point can also be used to localize individual molecules by matching their particular temporal light emission patterns to the measured temporal signal. This paper evaluates the feasibility of SPLM with STM illuminations used in and inspired by CHIRPT microscopy via the information content its data carry about the emitter location(s). More specifically, we provide the mathematical formalism of Fisher information (FI) and the Cramér–Rao lower bound (CRLB) associated with the location parameters of the emitter(s). The FI and CRLB are then numerically evaluated under different experimental assumptions to assess the effects of experimental parameters on localization precision. Last, we compare the single-pixel CRLB to that from camera-based single-molecule localization microscopy in the localization of a single emitter. We show that SPLM has several distinguishing characteristics that provide certain advantages, such as relatively constant CRLB over a very large illumination volume and improved CRLB for 3D localization due to the information coupling introduced by simultaneous modulations of the transverse axes.

Funder

Colorado State University

Publisher

Optica Publishing Group

Subject

Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3