Affiliation:
1. Peking University
2. Photonic Systems Laboratory (PHOSL), STI-IEM
3. Tsinghua University
Abstract
The pursuit of high-speed and on-chip optical communication systems has promoted extensive exploration of all-optical control of light-matter interactions via nonlinear optical processes. Here, we have numerically investigated the ultrafast dynamic switching of optical response using tunable hyperbolic metamaterial (HMM) which consists of five pairs of alternating layers of indium tin oxide (ITO) and SiO2. The nonlinearity of the HMM is analyzed by the ultrafast dynamics of the hot electrons in the epsilon-near-zero (ENZ) ITO. Our approach allows large and broad all-optical modulation of the effective permittivity and topology of the HMM on the femtosecond time-scale. Based on the proposed HMM platform, we have shown considerable tunability in the extinction ratio and Purcell enhancement under various pump fluence. In addition, we have achieved all-optical control of the coupling strength through depositing plasmonic resonators on the HMM platform. A significant tuning of the coupled resonance is observed by changing pump fluence, which leads to a switching time within 213 fs at a specific wavelength with a relative modulation depth more than 15 dB.
Funder
Youth Science and Technology Innovation Talent of Guangdong Province
Shenzhen Fundamental Research Program
Basic and Applied Basic Research Foundation of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献