Al2O3-YAG:Ce/YAG composite ceramic phosphor in a transmissive configuration for high-brightness laser-driven lighting

Author:

Sang Pengfei,Zhang Le1ORCID,Kang Jian1ORCID,Li Yanbin1,Chen Shiwei12,Yang Peng3,Sun Bingheng4,Li Yang5,Chen Hao1

Affiliation:

1. Jiangsu Xiyi Advanced Materials Research Institute of Industrial Technology

2. Xuzhou Kangna Advanced Materials Technology Co., Ltd

3. Xuzhou Fuchang Electronic Technology Co., Ltd

4. Shanghai Institute of Optics Fine Mechanics

5. Shanghai Institute of Technology

Abstract

High-power, high-brightness laser lighting promotes new requirements for light-conversion materials, such as high thermal conductivity, high saturation threshold and compact encapsulation. In this paper, we designed and fabricated a novel composite structure ceramic including a 1.0 × 1.0 mm2 Al2O3-YAG:Ce ceramic and a φ=16.0 mm transparent YAG ceramic for the transmissive configuration in laser lighting. When pumped by blue laser from 0∼60 W mm2, all the samples exhibited no luminous saturation phenomenon, and the 10.0 wt.%Al2O3-YAG:Ce/YAG composite ceramic with the thickness of 0.3 mm maintained white light with a luminous efficacy over 200 lm/W. Moreover, a maximal luminous flux over 1000 lm, a correlated color temperature (CCT) of 5471 K, and an operating temperature as low as 92.3 °C were obtained under the excitation power density as high as 60 W/mm2. The configuration that Al2O3-YAG:Ce encapsulated by YAG reflects an excellent optical and thermal properties by using transparent and highly thermally conductive YAG materials. These results indicate that Al2O3-YAG:Ce/ YAG composite ceramic phosphor is a promising candidate in transmissive configuration for automotive lighting and laser searchlight.

Funder

Key Technologies Research and Development Program

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

Jiangsu Provincial Key Research and Development Program

Natural Science Foundation of Jiangsu Province

Graduate Research and Innovation Projects of Jiangsu Province

International Science and Technology Cooperation Program of Jiangsu Province

Natural Science Research of Jiangsu Higher Education Institutions of China

Xuzhou Science and Technology Program

State Key Laboratory of Advanced Materials and Electronic Components, Guangdong Fenghua Advanced Technology Holding

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3