Nanothermometry in rarefied gas using optically levitated nanodiamonds

Author:

Luntz-Martin Danika R.ORCID,Bommidi Dinesh K.,Zhang Kai,Pickel Andrea D.,Vamivakas A. N.

Abstract

Heat transfer in gases in the continuum regime follows Fourier’s law and is well understood. However, it has been long understood that in the subcontinuum, rarefied gas regime Fourier’s law is no longer valid and various models have been proposed to describe heat transfer in these systems. These models have very limited experimental exploration for spherical geometries due to the difficulties involved. Optically levitated nanoparticles are presented as the ideal experimental system to study heat transfer in rarefied gases due to their isolation from their environment. Nanodiamonds with nitrogen-vacancy centers are used to measure temperature. As the pressure decreases so does the heat transfer to the rarefied gas and the nanodiamond temperature increases by over 200 K. These experiments demonstrate the utility of optically levitated nanoparticles to study heat transfer in any gas across a wide range of pressures. In the future, these measurements can be combined with models to empirically determine the energy accommodation coefficient of any gas.

Funder

University of Rochester

Office of Naval Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3