Self-attention module in a multi-scale improved U-net (SAM-MIU-net) motivating high-performance polarization scattering imaging

Author:

Lin Bing,Fan Xueqiang,Guo ZhongyiORCID

Abstract

Polarization imaging has outstanding advantages in the field of scattering imaging, which still encounters great challenges in heavy scattering media systems even though there are helps from deep learning technology. In this paper, we propose a self-attention module (SAM) in multi-scale improved U-net (SAM-MIU-net) for the polarization scattering imaging, which can extract a new combination of multidimensional information from targets effectively. The proposed SAM-MIU-net can focus on the stable feature carried by polarization characteristics of the target, so as to enhance the expression of the available features, and make it easier to extract polarization features which help to recover the detail of targets for the polarization scattering imaging. Meanwhile, the SAM’s effectiveness has been verified in a series of experiments. Based on proposed SAM-MIU-net, we have investigated the generalization abilities for the targets’ structures and materials, and the imaging distances between the targets and the ground glass. Experimental results demonstrate that our proposed SAM-MIU-net can achieve high-precision reconstruction of target information under incoherent light conditions for the polarization scattering imaging.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3