Memory efficient constrained optimization of scanning-beam lithography

Author:

Jidling Carl1ORCID,Fleming Andrew J.2,Wills Adrian G.2,Schön Thomas B.1

Affiliation:

1. Uppsala University

2. University of Newcastle

Abstract

This article describes a memory efficient method for solving large-scale optimization problems that arise when planning scanning-beam lithography processes. These processes require the identification of an exposure pattern that minimizes the difference between a desired and predicted output image, subject to constraints. The number of free variables is equal to the number of pixels, which can be on the order of millions or billions in practical applications. The proposed method splits the problem domain into a number of smaller overlapping subdomains with constrained boundary conditions, which are then solved sequentially using a constrained gradient search method (L-BFGS-B). Computational time is reduced by exploiting natural sparsity in the problem and employing the fast Fourier transform for efficient gradient calculation. When it comes to the trade-off between memory usage and computational time we can make a different trade-off compared to previous methods, where the required memory is reduced by approximately the number of subdomains at the cost of more computations. In an example problem with 30 million variables, the proposed method reduces memory requirements by 67% but increases computation time by 27%. Variations of the proposed method are expected to find applications in the planning of processes such as scanning laser lithography, scanning electron beam lithography, and focused ion beam deposition, for example.

Funder

Kjell och Märta Beijers Stiftelse

Stiftelsen för Strategisk Forskning

Australian Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3