High-capacity MIMO visible light communication integrated into mini-LED LCDs

Author:

Zhao ZhiqingORCID,Qiu Yuqing,Zou Guowei,Liu YiORCID,Weng Jiefeng,Yang Bo-Ru,Qin ZongORCID

Abstract

Visible light communication (VLC) can be integrated into a liquid crystal display (LCD) by modulating its backlight while normally showing pictures. Received by ordinary cameras, such integrated display and communication (IDAC) systems are promising for the Internet of Things and Metaverse. However, in the premise of unaffected display function, the capacity of current IDAC systems is limited, with data rates of very few kbps. This work proposes a new architecture: multiple-input, multiple-output (MIMO) VLC integrated into a mini-LED LCD, whose many backlight segments act as multiple transmitters. A camera utilizes the rolling shutter effect with independent pixel columns to form multiple outputs. The communication capacity is thus significantly multiplied by the backlight column number. In addition, local dimming, which is favorable for an LCD’s contrast and power consumption, is exploited to achieve efficient signal modulation. We built a mini-LED LCD prototype with 8-by-20 backlight segments for experimental verification. The backlight segments multiplex a video-rate signal for local dimming and a high-frequency (∼34 kHz) signal modulated through multi-pulse position modulation (MPPM) for VLC. By taking photographs with a camera 1.1 m away from the screen, a record-high rate of 201.6 kbps (approximately ten times faster than current IDAC systems) was experimentally achieved with a bit error rate satisfying the forward error correction. Improved image contrast due to local dimming was also observed.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3