Exploring the pyro-phototronic effect for giant lateral photoresponse in an ITO/CdS/Si heterojunction position-sensitive detector

Author:

Zhang Guojuan,Guo Siyang,Zhang Tao,Wang Qing,Zhang Zicai,Liu Jihong,Wang Shufang,Qiao Shuang

Abstract

The demand for a high-performance position sensitive detector (PSD), a novel type of photoelectric sensor, is increasing due to advancements in digitization and automation technology. Cadmium sulfide (CdS), a non-centrosymmetric material, holds significant potential in photoelectric devices. However, the pyroelectric effect of CdS in PSDs and its influence on lateral photoresponse are still unknown. In this work, we fabricated an ITO/CdS/Si heterojunction using chemical bath deposition (CBD) and investigated the pyro-phototronic effect under nonuniform illumination. The theory of electron-hole pairs’ generation, separation, and carrier diffusion was carefully considered to understand the underlying mechanisms. Our experimental findings revealed that the device exhibited an exceptionally high position sensitivity (PS) of 1061.3 mV/mm, surpassing the generally observed PS of 655.1 mV/mm induced by single photovoltaic effect by 160.5%. Meanwhile, the PSD demonstrated rapid response times of 0.01 and 0.04 ms, respectively. Moreover, the influence of ambient temperature and electrode distance on the pyro-phototronic effect was well analyzed. Notably, the PSD exhibited remarkable stability even at ambient temperatures up to 150 °C. Despite the considerable working distance of 11 mm, the PS of the PSD remained at 128.99 mV/mm. These findings provide valuable theoretical and experimental foundations for optimizing the design and implementation of high-performance large working distance PSDs.

Funder

Science and Technology Plan Project of Hebei Province

Natural Science Foundation of Hebei Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3