Abstract
Dual wavelength interferometry has a long history and broad range of applications in optical measurements of objects, which exhibit phase steps greater than the single measurement wavelength [1–3]. The use of two measurements at slightly different wavelengths allows to extend the measurement range. In case of holographic tomography, the standard measurement of large samples such as organoids fails due to large refractive index differences and phase unwrapping errors. The application of synthetic wavelength allows to decrease the values of phase of the scattered wave for the synthetic wavelength and thus apply Born approximation to objects that exceed the π/2 phase for each of the constituent measurements. In this work holographic tomography is performed with a swept laser source, which additionally allows to fine-tune the synthetic wavelength.