Dynamic polarization fusion network (DPFN) for imaging in different scattering systems

Author:

Lin Bing,Fan Xueqiang,Peng Peng,Guo ZhongyiORCID

Abstract

Deep learning has broad applications in imaging through scattering media. Polarization, as a distinctive characteristic of light, exhibits superior stability compared to light intensity within scattering media. Consequently, the de-scattering network trained using polarization is expected to achieve enhanced performance and generalization. For getting optimal outcomes in diverse scattering conditions, it makes sense to train expert networks tailored for each corresponding condition. Nonetheless, it is often unfeasible to acquire the corresponding data for every possible condition. And, due to the uniqueness of polarization, different polarization information representation methods have different sensitivity to different environments. As another of the most direct approaches, a generalist network can be trained with a range of polarization data from various scattering situations, however, it requires a larger network to capture the diversity of the data and a larger training set to prevent overfitting. Here, in order to achieve flexible adaptation to diverse environmental conditions and facilitate the selection of optimal polarization characteristics, we introduce a dynamic learning framework. This framework dynamically adjusts the weights assigned to different polarization components, thus effectively accommodating a wide range of scattering conditions. The proposed architecture incorporates a Gating Network (GTN) that efficiently integrates multiple polarization features and dynamically determines the suitable polarization information for various scenarios. Experimental result demonstrates that the network exhibits robust generalization capabilities across continuous scattering conditions.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3