Affiliation:
1. Shandong University
2. Chinese Academy of Sciences
3. Tongji University
Abstract
Recently, the concepts of parity–time (PT) symmetry and band topology have inspired many novel ideas for light manipulation in their respective directions. Here we propose and demonstrate a perfect light absorber with a PT phase transition via coupled topological interface states (TISs), which combines the two concepts in a one-dimensional photonic crystal heterostructure. By fine tuning the coupling between TISs, the PT phase transition is revealed by the evolution of absorption spectra in both ideal and non-ideal PT symmetry cases. Especially, in the ideal case, a perfect light absorber at an exceptional point with unidirectional invisibility is numerically obtained. In the non-ideal case, a perfect light absorber in a broken phase is experimentally realized, which verifies the possibility of tailoring non-Hermiticity by engineering the coupling. Our work paves the way for novel effects and functional devices from the exceptional point of coupled TISs, such as a unidirectional light absorber and exceptional-point sensor.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献