Bright luminescence from nontoxic all-inorganic low-dimensional cesium halide

Author:

Fan Ranran,Qiao JunpengORCID,Xu Jiaxin,Feng Sujuan,Liu GuangqiangORCID

Abstract

Due to the superiority of low cost, easy manufacture, and tunable light emission owing to the diversity of compositions and dimensionalities, the metal halides have appeared as a promising class of semiconductors. Nevertheless, the toxicity problem along with inherent instability of Pb-based metal halides greatly limits their large-scale applications. Based on this situation, it is necessary to develop eco-friendly materials, which could simultaneously maintain the excellent optoelectronic properties of lead materials. In this Letter, the one-dimensional Cu + -alloyed Cs2AgI3 has been successfully synthesized. An intense blue emission located at 469 nm with a large Stokes shift was observed. Density functional theory calculation indicated that the Cu+ ions could effectively modulate the density of state population, which was the key factor drastically boosting the photoluminescence quantum yield (PLQY). This kind of highly efficient metal halide may overcome the bottlenecks of toxicity and poor efficiency issues of blue emission and will have a promising prospect in the optoelectronic fields.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3