UAV system with trinocular vision for external obstacle detection of transmission lines

Author:

Ma Yunpeng1,Yu Zhihong1,Zhou Yaqin1,Li Qingwu1ORCID,Wu Yi1

Affiliation:

1. Hohai University

Abstract

External obstacle detection is a significant task in transmission line inspection and is related to the safe operation of the power transmission grid. In recent years, unmanned aerial vehicles (UAVs) equipped with different devices have been widely used for transmission line inspection. However, because of the complex environment of transmission lines and weak power line textures in the obtained images, most existing methods and systems cannot meet the requirements for real-time and high-accuracy external obstacle detection of transmission lines. In this paper, a novel, to the best of our knowledge, UAV system integrated trinocular vision technology with remote sensing is developed to achieve better external obstacle detection of transmission lines in real time, which is composed of a DJ-Innovations (DJI) UAV equipped with a global positioning system (GPS), angle sensors, trinocular vision including three visible cameras with the same parameters, and a small processor with a pre-implanted software algorithm. In this paper, a new method for external obstacle detection of transmission lines is proposed to satisfy the requirements for real-time and high-accuracy practical inspection applications. First, the original trinocular images need to be rectified. Then, the rectified trinocular images are adopted to achieve three-dimensional reconstruction of power lines. Finally, based on trinocular vision, bag of feature, and GPS, the clearance distance measurement, obstacle classification, and obstacle location are realized. Experimental tests on 220 kV transmission lines reveal that our proposed system can be applied in practical inspection environments and has good performance.

Funder

National Natural Science Foundation of China

Jiangsu Provincial Key Research and Development Program

Jiangsu Key Laboratory of Power Transmission and Distribution Equipment Technology

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Lightweight Controller for Autonomous Following of a Target Platform for Drones;2023 IEEE International Conference on Cybernetics and Innovations (ICCI);2023-03-30

2. The Mobile Command System of UAV Operation Inspection and Dispatching Oriented to Fusion Multi Sensors;2022 5th International Conference on Power and Energy Applications (ICPEA);2022-11-18

3. A Measurement Method of the Shortest Distance Between Ultrahigh Ships and Transmission Lines Based on Binocular Vision;IEEE Transactions on Instrumentation and Measurement;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3