Affiliation:
1. Sandia National Laboratories
Abstract
This work advances laser absorption spectroscopy with measurements of aluminum monoxide (AlO) temperature and column density in extreme pressure (P > 60 bar) and temperature (T > 4000 K) environments. Measurements of the AlO A2Π
i
–X2Σ+ transition are made using a microelectromechanical system, tunable vertical cavity surface emitting laser (MEMS-VCSEL). Simultaneous emission measurements of the AlO B2Σ+–X2Σ+ transition are made along a line of sight that is coaxial with the laser absorption. Absorption temperature fits agree with emission spectra for a T = 3200 K, P = 9 bar case. In cases with T > 4000 K, P > 60 bar, absorption fits match the ambient temperature while emission fits over-estimate it, owing to high optical depths. These data juxtapose passive and active spectroscopic methods and demonstrate the versatility of AlO laser absorption in high-pressure and high-temperature environments where experimental data remain scarce, and engineering models will benefit from refined measurements.
Funder
Sandia National Laboratories
Laboratory Directed Research and Development
U.S. Department of Energy
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献