Microwave photonic multiform microwave frequency shift keying signal generator

Author:

Feng Kuisheng1,Li Na1,Wang GuodongORCID,Xiao Jin,Jiang Wei23

Affiliation:

1. Yango University

2. National Key Laboratory of Science and Technology on Space Microwave

3. China Academy of Space Technology (Xi’an)

Abstract

A photonic approach to realizing multiform microwave frequency shift keying (FSK) signal generation is proposed and demonstrated. In the scheme, a commercial dual-polarization quadrature phase shift keying modulator (DP-QPSKM) is employed to generate two orthogonally-polarized signals containing specific optical sidebands, and a subsequent Sagnac loop structure govern the interference results of these two signals. From a theoretical analysis, when the modulators are properly biased, microwave FSK signal with fixed double relationship or flexibly tunable subcarrier frequencies can be obtained, and high frequency multiplication can be realized in the meantime. Furthermore, a photonic-optimized coherent demodulation structure is designed to recover the binary coding data, which can effectively avoid the electronic bottleneck. Simulation has been performed to investigate the mechanism and the discussions about the robustness to non-ideal parameters including DC bias, phase shift and polarization angle are also given. In the proof-of-concept experiment, microwave FSK signal with subcarrier frequencies of 2/4, 2.2/3.8, 2.4/3.6, 2.6/3.4, 2.8/3.2 GHz are generated, and the correct binary coding data is successfully recovered with the aid of simulation platform. The simulation and experimental results can verify the feasibility of the proposed multiform microwave FSK signal generator, which may find applications in modern radar and communication systems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3