Plethysmographic assessment of vasomotor response in patients with congestive heart failure before and after heart transplantation

Author:

Mamontov Oleg V.123,Zaytsev Valeriy V.12ORCID,Kamshilin Alexei A.1ORCID

Affiliation:

1. Russian Academy of Sciences

2. Almazov National Medical Research Centre

3. Pavlov First Saint Petersburg State Medical University

Abstract

Sympathetic vasomotor response is the most important part of the autonomic regulation of circulation, which determines the quality of life. It is disrupted in a number of diseases, particularly in patients with congestive heart failure (CHF). However, experimental evaluation of reflex vasoconstriction is still a non-trivial task due to the limited set of available technologies. The aim of this study is to assess the dynamics of vasomotor response of forearm vessels due to both the deactivation of cardiopulmonary baroreceptors and cold stress using a newly designed imaging plethysmograph (IPG) and compare its performance with classical air plethysmograph (APG). In both vasoconstriction tests, vasomotor response was assessed as a change in the blood flow rate due to venous occlusion compared to that at rest. Both tests were carried out in 45 CHF patients both before and after heart transplantation, as well as in 11 age-matched healthy volunteers. Prior to transplantation, both APG and IPG showed a significant decrease in vasomotor response in CHF patients due to both tests as compared to the control group. After heart transplantation, an increase in vasomotor reactivity was revealed in both vasoconstriction tests. We have found that both plethysmographic techniques provide correlated assessment of changes in the vasomotor response. In addition, we have found that IPG is more resistant to artifacts than APG. The new IPG method has the advantage of measuring blood flow in a contactless manner, making it very promising for experimental evaluation of vasomotor response in clinical conditions.

Funder

Russian Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3