Nonlinear gain models in a quantum cascade laser

Author:

Kolek AndrzejORCID,Sobaszek MirosławORCID

Abstract

Density matrix analysis of a three-state model of quantum cascade laser (QCL) reveals that in this device, the optical gain is composed of the linear part (proportional to population inversion Δn) and the remaining nonlinear part. The nonlinear component non-negligibly contributes even to the small-signal response of the medium. In many attempts to modeling QCLs, the common practice to account for nonlinear gain components is to complement the equation for the gain, g = g c Δn, g c is the gain cross-section, by a compression factor f. In this paper, improved (but still simple) models of the optical gain in QCL are proposed, which preserve the two-component gain structure. With these models, there is no need to solve the Hamiltonian with time-dependent potentials, so that extraordinary numerical loads can be avoided, but simultaneously the essential physics of the phenomena is kept. The improved gain models defined by Eqs. (12), (15) and (16) enable accounting for its nonlinear components while preserving the load-saving, scattering-like approach to light-matter interaction. It is also shown that as long as the populations and dc coherences are determined such that they account for the interaction with the optical field, the small-signal formulation of the gain gives its realistic estimate also for a large optical signal. This conjecture validates the use of non-equilibrium Green’s function-based approaches, in which the interaction with the optical field is included through electron-photon selfenergies. The small-signal formulation of the gain can be used in this approach to monitor the saturation process, estimate the clamping flux and the light-current characteristic.

Funder

Narodowe Centrum Nauki

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3